62. Über eine Vereinfachung der Beschreibung und Analyse von komplizierten kernmagnetischen Resonanzspektren mit Hilfe von Teilspektren

von P. Diehl

(22. II. 65)

1. Einführung. – Die Verfahren, welche zur Analyse von kernmagnetischen Resonanzspektren entwickelt wurden, stellen allgemein Versuche dar, eine Vereinfachung des komplizierten Spektrums durch Aussuchen gewisser Regelmässigkeiten zu erreichen. So zum Beispiel reduziert die Theorie der «zusammengesetzten Partikel» [1] die Schwierigkeit der Analyse, indem sie zeigt, dass Spektren beliebiger Systeme von magnetisch äquivalenten Kernen als Überlagerungen von einfacheren Spektren dargestellt werden können.

Die Methode der «effektiven LARMOR-Frequenz» [2] ermöglicht die Bestimmung sämtlicher Parameter von Spektren des Typs $AA'..., BB'..., ...R_p^*, ...X_q^*...$ durch Identifizieren und Analysieren gewisser Teilspektren.

In einer Arbeit über die «Teilspektrenanalyse» haben DIEHL et al. [3] gezeigt, dass die Methoden der «zusammengesetzten Partikel» sowie der «effektiven LARMOR-Frequenz» als Spezialfälle eines allgemeineren immer anwendbaren Prinzips aufgefasst werden können. Es wird dargelegt, dass die Art des Zerfalls eines komplizierten Spektrums in einfachere Teilspektren sich ohne Kenntnis der HAMILTON-Funktion, lediglich durch Benützung von Gruppentheorie und «guten Quantenzahlen», herleiten lässt.

In der vorliegenden Arbeit sollen an einigen Beispielen die Transformationen hergeleitet werden, welche die Parameter der einfacheren Teilspektren mit den Parametern des komplizierten Systems verbinden. Die Kenntnis dieser Transformationen wird es erlauben festzustellen, in welchen Teilspektren bestimmte Parameter des Problems zu suchen sind. Ferner wird es möglich sein, durch Identifizieren und Analysieren von einfachen, wohl bekannten Teilproblemen komplizierte neue Systeme zu diskutieren.

2. Das Prinzip der Teilspektrenanalyse. – Am einfachen Beispiel eines AA'XX'-Kernresonanzsystems [4] soll vorerst kurz die oben erwähnte Methode der Teilspektrenanalyse [3] erklärt werden.

Wir konstruieren zuerst die Wellenfunktionen entsprechend der lokalen Symmetrie der chemisch äquivalenten Kerne. Es sind dies in unserem Fall für die AA'- sowie die XX'-Kerne die symmetrischen Funktionen $\alpha \alpha$, $2^{-1/2} (\alpha \beta + \beta \alpha)$, $\beta \beta$ sowie die antisymmetrische Funktion $2^{-1/2} (\alpha \beta - \beta \alpha)$. Diese werden anschliessend auf ihre Eigenschaften in bezug auf die totale Symmetrie des Kernsystems beziehungsweise Molekels geprüft. Das AA'XX'-System weist im ebenen Fall die totale Symmetrie C_2 auf, folglich können die symmetrischen bzw. antisymmetrischen Funktionen der lokalen Symmetrie mit den Typen der totalen Symmetrie A bzw. B bezeichnet werden. Man bildet aus den Wellenfunktionen der chemisch äquivalenten Kerne die Produktwellenfunktionen der Molekel und stellt den Symmetrietyp der Produkte fest. Benützt man für die Wellenfunktionen als Abkürzung waagrechte Striche mit Angabe der z-Komponente des Spins $\left(\frac{F_z(XX')}{p}\right)$,

$$lpha lpha = rac{1}{-1}$$
 , $2^{-1/2} \left(lpha eta + eta lpha
ight) = rac{0}{-1}$, $2^{-1/2} \left(lpha eta - eta lpha
ight) = rac{0}{-1}$, $eta eta = rac{-1}{-1}$,

so kann die Produktbildung nach Tabelle 1 dargestellt werden.

Tabelle 1. Die symmetrischen Produktwellenfunktionen

 $\frac{F_z(XX'AA')}{F_z(XX'AA')}$ für die möglichen Werte von $F_z(XX')$ im ebenen System AA'XX' mit C_2 -Symmetrie

Fz	XX'-Teil			Fz	AA'-Teil	$F_z(AA')$
	Symme	trietyp			Symme	trietyp
	A	В			A	B
1			×	1		
0		0		0	0	0
-1	<u>-1</u>			-1	1	

$F_{z}(XX'AA')$				$F_z(XX)$	', AA')			
				Symme	trietyp			
		$A \times A = A$	4	$B \times B = A$	A	$\times B = E$	}	$B \times A = B$
2	1,1							i i
1	1,0	<u>0,1</u>		-	1,0			<u> </u>
0	$\frac{1,-1}{}$	0,0	-1,1	<u>0,0</u>		0,0		
- 1		$\underline{0,-1}$	<u>-1,0</u>				<u>-1,0</u>	$\frac{0, -1}{2}$
- 2			-1, -1]	
$F_z(XX')$	1	0	-1	0	1	0	-1	0

Unter Berücksichtigung der Tatsache, dass Wellenfunktionen mit gleichem Symmetrietyp und mit gleichem Wert der z-Komponente des XX'-Spins $F_z(XX')$ nichtverschwindende Nebendiagonalelemente in der HAMILTON-Matrix aufweisen und deshalb vermischt werden, lässt sich aus dem Diagramm der Wellenfunktionen der Tab. 1 das Diagramm der stationären Wellenfunktionen (Tab. 2) herleiten. Dieses ist identisch mit dem sogenannten Energieniveauschema. Wir können also z. B. die erlaubten A-Übergänge einzeichnen.

E(XX'AA')			Symme	trietyp		
1 z\111 1111)		A			В	
2	0,1					
1	1,0	$\frac{0,1}{\bigwedge}$		1,0	$\frac{0,1}{\bigwedge}$	
0		$\frac{0/0}{\sqrt{2}} \frac{0/0}{\sqrt{2}}$	-1,1		$\frac{0/0}{\sqrt{2}} \frac{0/0}{\sqrt{2}}$	
- 1		$\underline{0 \sqrt{-1}}$	<u>-1</u>		$\underline{0 \sqrt{-1}}$	<u>-1,0</u>
- 2			<u>-1 ,-1</u>			
$F_{z}(XX')$	1	0	-1	1	0	-1

Tabelle 2. Energieniveauschema und erlaubte A-Übergänge des Systems AA'XX'

Eine Betrachtung von Tab. 2 zeigt, dass die ursprüngliche HAMILTON-Matrix des 4-Spin-Problems von der Ordnung 16 durch Berücksichtigung von Symmetrie sowie der «guten Quantenzahl» $F_z(XX')$, $[\Delta F_z(XX') = 0]$ in 12 Teilmatrizen der Ordnung 1 sowie 2 Teilmatrizen der Ordnung 2 zerfällt. Darüber hinaus beweist das Vorhandensein von Energieniveaugruppierungen der Art (1:2:1) in den Fällen $F_z(XX') = 0$ im A- sowie dem B-Symmetrietyp die Existenz von Teilspektren des Typs ab. (Kleine Buchstaben sollen zur Bezeichnung von Kernen in Teilspektren benützt werden.) Ebenso lassen sich die Energieniveaugruppierungen (1:1:1) für $F_z(XX') = \pm 1$ und A-Symmetrietyp zusammen mit den isolierten Zuständen des B-Symmetrietyps als a_2 -Teilspektren deuten.

Die Methode der Teilspektrenanalyse erlaubt somit die Feststellung, dass der AA'-Teil des 4-Spinsystems AA'XX' als Überlagerung von 4 Teilspektren von 2-Spinsystemen (a_2, ab) dargestellt werden kann. Es ist also im Prinzip gelungen, ein kompliziertes System auf bekannte einfachere Teilsysteme zurückzuführen.

3. Die Teilspektrentransformationen. – 3.1. Das allgemeine Problem. Da die Teilspektrenanalyse lediglich erlaubt, die Art des Zerfalls eines komplizierten Systems in einfachere Teilsysteme zu konstruieren, muss in einem weiteren Schritt der Zusammenhang zwischen den Parametern des Ausgangssystems und denjenigen der Teilsysteme in Form von Transformationen hergeleitet werden. Zu diesem Zweck werden die HAMILTON-Matrizen der beiden Systeme verglichen.

Als Beispiel sei ein Fall diskutiert, in welchem Übergänge zwischen einer Matrix erster Ordnung und einer solchen dritter Ordnung stattfinden. Dies ist bei Auftreten

1. Kompl	liziertes	s System	2. T	`eilsys	tem
	A_{11}			<i>a</i> ₁₁	
B_{11}	B_{12}	B_{13}	b_{11}	b_{12}	b_{13}
B_{21}	B_{22}	B_{23}	b_{21}	b_{22}	b_{23}
B_{31}	B_{32}	B_{33}	b_{31}	b_{32}	b33

eines *abc*-Teilspektrums möglich. Es ergibt sich der folgende Vergleich von НАМІLТОN-Matrizen.

Eine Möglichkeit der Parameterzuordnung ist durch Gleichsetzen jedes einzelnen Matrixelements des Systems 1 mit dem entsprechenden des Systems 2 gegeben $A_{11} = a_{11}$, $B_{11} = b_{11}$, $B_{12} = b_{12}$... Dies führt jedoch nur ausnahmsweise zu einer Lösung des Problems. In der Tat wird von der Teilspektrentransformation verlangt, dass sie nicht Matrixelemente sondern Übergänge, d.h. Differenzen zwischen Matrixelementen ineinander überführt. Im diskutierten Fall würden die Übergänge durch Differenzenbildung zwischen den Energien A_{11} bzw. a_{11} und den durch Diagonalisieren der Matrizen erhaltenen Energie X_1, X_2, X_3 bzw. x_1, x_2, x_3 berechnet werden. Da diese Energien Lösungen von Gleichungen dritten Grades sind, ist ihre Darstellung als Funktion der Molekelparameter analytisch nicht möglich. Die Lösung unseres Problems muss deshalb durch Bildung und Vergleich von Invarianten der Transformationen erreicht werden.

So z.B. ist die Summe der 3 Übergänge:

$$(A_{11} - X_1) + (A_{11} - X_2) + (A_{11} - X_3) = 3 A_{11} - (X_1 + X_2 + X_3)$$

analytisch, da sie die Spur der Matrix 1

$$X_1 + X_2 + X_3 = B_{11} + B_{22} + B_{33} = \Sigma_1$$

Wir erhalten aus einem Vergleich von 1 und 2 eine erste Invariantenbeziehung.

I.
$$3 A_{11} - \Sigma_1 = 3 a_{11} - (b_{11} + b_{22} + b_{33}) = 3 a_{11} - \sigma_1$$

Die folgende Summe von Produkten der Übergänge ist eine weitere Invariante:

$$\begin{split} & (A_{11} - X_1) \; (A_{11} - X_2) + (A_{11} - X_1) \; (A_{11} - X_3) + (A_{11} - X_2) \; (A_{11} - X_3) = \\ & 3 \; A_{11}^2 - 2 \; A_{11} \; (X_1 + X_2 + X_3) + (X_1 \; X_2 + X_1 \; X_3 + X_2 \; X_3) = 3 \; A_{11}^2 - 2 \; A_{11} \; \Sigma_1 + \Sigma_2 = \\ & 3 \; A_{11}^2 - 2 \; A_{11} \; (B_{11} + B_{22} + B_{33}) + (B_{11} \; B_{22} + B_{11} \; B_{33} + B_{22} \; B_{33} - B_{12}^2 - B_{13}^2 - B_{23}^2) \; . \end{split}$$

Wir erhalten daraus die Beziehung II.

II.
$$3 A_{11}^2 - 2 A_{11} \Sigma_1 + \Sigma_2 = 3 a_{11}^2 - 2 a_{11} \sigma_1 + \sigma_2$$

Eine weitere Invariante, die nicht explizit angegeben werden soll, lässt sich aus dem Produkt der 3 Übergänge

$$(A_{11} - X_1) (A_{11} - X_2) (A_{11} - X_3) = (a_{11} - x_1) (a_{11} - x_2) (a_{11} - x_3)$$

bilden.

enthält.

Die Zahl der benötigten Invariantenbeziehungen ist durch die Anzahl der Parameter des Teilspektrums bedingt.

Im folgenden wird die Teilspektrentransformation an einigen Beispielen diskutiert. 3.2. Das System AA'XX'

Die Teilspektrentransformation soll die Beziehungen zwischen den Parametern des Problems AA'XX' $[J_{AA'}, J_{XX'}, J_{AX}, J_{AX'}]$ und denjenigen der Teilspektren

 $a_2[v_a]$ und $ab[v_a, v_b, J_{ab}]$ angeben. Diese Beziehungen müssen, wie in Abschnitt 3.1 ausgeführt, aus einem Vergleich der HAMILTON-Matrizen der entsprechenden Systeme hergeleitet werden.

3.2.1. Die Teilspektren a_2 . Die a_2 -Teilspektren treten, wie aus Tab. 2 hervorgeht, für die $F_z(XX')$ -Werte ± 1 auf. Der in Tab. 3 durchgeführte Vergleich der Matrixelemente [4] nach Subtraktion konstanter Beiträge führt direkt auf die Transformationen III.

Tabelle 3. Vergleich von Matrixelementen der Systeme AA'XX' und a2

a_2
<i>v_a</i>
$-v_a$

III.
$$v_a = v_A \pm \frac{1}{2} (J_{AX} + J_{AX'}); \quad F_z(XX') = \pm 1.$$

Es handelt sich hier offenbar um eine «effektive LARMOR-Frequenz»-Transformation [2].

3.2.2. Die Teilspektren ab. In Tabelle 4 werden entsprechende Matrizen des AA'XX'-Systems (A-Symmetrietyp) und des Teilspektrums ab verglichen

AA'XX'	a b
v _A	$\frac{1}{2} v_a + \frac{1}{2} v_b + \frac{1}{4} J_{ab}$
$-(J_{AA'}+J_{XX'})$ $-\frac{1}{2}(J_{AX}-J_{AX'})$	$\left(\frac{1}{2} v_a - \frac{1}{2} v_b - \frac{1}{4} J_{AB}\right) \qquad \qquad \frac{1}{2} J_{ab}$
$-\frac{1}{2}\left(J_{AX}-J_{AX'}\right) \qquad 0$	$\frac{1}{2} J_{ab} \qquad \left(-\frac{1}{2} v_a + \frac{1}{2} v_b - \frac{1}{4} J_{ab} \right)$
$-v_A$	$-\frac{1}{2}v_a - \frac{1}{2}v_b + \frac{1}{4}J_{ab}$

Tabelle 4. Vergleich von Matrizen der Systeme AA'XX' und a b

Unter Benützung der Bezeichnungen von Abschnitt 3.1 können wir die folgenden Invariantenbeziehungen untersuchen:

IV. $2 A_{11} - \Sigma_1 = 2 a_{11} - \sigma_1$ und

V.
$$A_{11}^2 - A_{11} \Sigma_1 + \Sigma_2 = 2 a_{11} - a_{11} \sigma_1 + \sigma_2$$
;

es folgt aus IV:

$$2 v_A + J_{AA'} + J_{XX'} = v_a + v_b + J_{ab}$$

und aus V:

$$\nu_A^2 + \nu_A \ (J_{AA'} + J_{XX'}) - \frac{1}{4} \ (J_{AX} - J_{AX'})^2 = \nu_a \ \nu_b + \frac{1}{2} \ J_{ab} \ (\nu_a + \nu_b) \ .$$

Die vorerst zur Berechnung der 3 Parameter v_a , v_b und J_{ab} ungenügende Zahl von zwei Invarianten lässt sich durch die folgende Bemerkung erweitern:

Unter der Voraussetzung dass $J_{AX} = J_{AX'}$, und somit die Kerne A, A' bzw. X, X' magnetisch äquivalent sind, ist allgemein das Prinzip der «effektiven LARMOR- $Frequenz \gg [2]$ anwendbar. Der A A'-Teil des A A'XX'-Spektrums muss dann aus einer Überlagerung von 4 a_2 -Spektren bestehen, die durch die folgenden Transformationen gekennzeichnet sind:

VI.

1.
$$v_a = v_A + J_{AX}$$

2. $v_a = v_A$ $J_{aa} = J_{AA}$.
3. $v_a = v_A$
4. $v_a = v_A - J_{AX}$

Es folgt somit, dass die LARMOR-Frequenzen von Teilspektren nur Summen von LARMOR-Frequenzen des Ausgangsspektrums sowie der Kopplungskonstanten zwischen den schwach gekoppelten Gruppen $(J_{AX}, J_{AX'})$ sein können.

Andererseits dürfen offenbar in Kopplungskonstanten der Teilspektren nur Summen von starken Kopplungskonstanten d.h. Kopplungen innerhalb der stark gekoppelten Gruppen auftreten $(J_{AA'}, J_{XX'})$. Diese Degenerationsbedingungen erlauben eine Aufspaltung der Invarianten-Beziehungen. Aus der Gleichung

$$2 v_A + J_{AA'} + J_{XX'} = v_a + v_b + J_{ab}$$

folgt:

$$2 v_A = v_a + v_b$$
 , $J_{AA'} + J_{XX'} = J_{ab}$,

während die zweite Invariantenbeziehung in die folgenden Teilgleichungen zerfällt:

$$v_A^2 - \frac{1}{4} (J_{AX} - J_{AX'})^2 = v_a v_b \quad \text{und} \quad v_A (J_{AA'} + J_{XX'}) = \frac{1}{2} J_{ab} (v_a + v_b) .$$

Die endgültigen Teilspektrentransformationen lauten somit:

VII.

$$v_{a} = v_{A} + \frac{1}{2} (J_{AX} - J_{AX'})$$

$$v_{b} = v_{A} - \frac{1}{2} (J_{AX} - J_{AX'})$$

$$J_{ab} = J_{AA'} + J_{XX'}.$$

Auf gleiche Weise lassen sich die Transformationen VIII für das a b-Teilspektrum mit B-Symmetrietyp herleiten:

VIII.

 $v_a = v_A + \frac{1}{2} (J_{AX} - J_{AX'})$ $v_b = v_A - \frac{1}{2} (J_{AX} - J_{AX'})$ $J_{a\,b} = J_{AA'} - J_{XX'} \, .$

Die Transformationen III, VII und VIII stellen eine vollständige Beschreibung des AA'XX'-Systems dar. Sie geben an, welche Parameter in welchem Teilspektrum

zu suchen sind. Die Intensitäten der 4 Teilspektren sind je 1/4 der totalen AA'- bzw. XX'-Intensität. Durch Vertauschen von A bzw. A' mit X bzw. X' erhalten wir die Transformation, welche den XX'-Teil des Spektrums bestimmen. Es zeigt sich, dass das Vertauschen nur die Transformation VIII verändert, indem das Vorzeichen von J_{ab} umgekehrt wird. Da jedoch das Vorzeichen der Kopplung ein ab-Spektrum nicht beeinflusst, folgt aus der Form der Transformationen III, VII und VIII, dass der AA'-Teil des AA'XX'-Spektrums mit dem XX'-Teil identisch ist.

In Fig. 1 wird der Zerfall eines AA'XX'-Spektrums in seine Teilspektren gezeigt.

Fig. 1. AA'-Teil des AA'XX'-Spektrums und seine Teilspektren

1. Vollständiger AA'-Teil; Parameter in Hz:

 $J_{AA'} = 3,0$ $J_{XX'} = 2,0$ $J_{AX} = 2,5$ $J_{AX'} = 7,5$

2. a₂-Teilspektren (Transformation III)

3. ab-Teilspektrum; A-Symmetrietyp (Transformation VII)

4. ab-Teilspektrum; B-Symmetrietyp (Transformation VIII)

3.3. Das System A A' A'' A''' XX'

Entsprechend dem Vorgehen von Abschnitt 2 lässt sich der Teilspektrenzerfall aus dem Produkt der lokal symmetrisierten Wellenfunktionen der Gruppen XX'(C_2 -Symmetrie) und AA'A''A''' (C_{2r} -Symmetrie) konstruieren. Dabei benützen wir die bekannte Darstellung für das ebene System von 4 Kernen mit C_{2r} -Symmetrie³).

$$\Gamma = 7 A_1 + 3 A_2 + 3 B_1 + 3 B_2$$
.

Das Produkt ist in Tabelle 5 dargestellt, während Tabelle 6 das resultierende Energieniveauschema zeigt.

Eine Betrachtung von Tabelle 6 ergibt das Resultat, dass der AA'A''A'''-Teil eines AA'A''A'''XX'-Spektrums aus 4 überlagerten Teilspektren, je 2 des Typs a_4

	XX'	-Teil	Ī		AA'.	A'' A'''-'	Teil	
F _z	Symme	etrietyp		F _z	Syn	nmetrie	typ	
	A_1	B_1			A_1	A_2	B_1	B_2
1			×	2	·			
0				1				
-1	—			0				
				-1				
				-2				

Tabelle 5. Produkt der lokal symmetrisierten Wellenfunktionen des Systems AA'A''A'''XX'

1			×	2	·			
0				1	—			
-1	—			0				
				-1				
				-2				
							·	
г	abelle 6	Fnera	ieninea	uschom	des Sustems A	A' A'' A	1"" X X	,

nergieniveauschema des Systems AA' A'

					Symn	netrie	typ					
$ \begin{array}{c} F_z(AA'A'' \\ A''''XX') \end{array} $	$\begin{array}{c} A_{1} = \\ A_{1} \times A_{1} \\ B_{1} \times B_{1} \end{array}$	_+		$\begin{vmatrix} A \\ A \\ B \end{vmatrix}$		-	$\begin{vmatrix} B \\ A \\ B \end{vmatrix}$	$ \begin{array}{l} {}_{1} = \\ {}_{1} \times B_{1} + \\ {}_{1} \times A_{1} \end{array} $		В А В	$a_1 \approx B_2 + a_1 \times A_2$	-
3	_		-									
2		-					-	_		-		
1			-							-		
0	-		_	-			-		-	-		_
-1	-					-			-			
- 2			-			-		_	-			_
- 3			-									
$F_{z}\left(XX^{\prime} ight)$	1	0	-1	1	0	-1	1	0	-1	1	0	-1

und aa'bb' besteht. Die im Abschnitt 3 beschriebenen Methoden führen unter Benützung der bekannten HAMILTON-Funktion des Systems [5] sowie der Invarianten nach Tabelle 7 auf die folgenden Transformationen: a_4 -Teilspektren:

IX.
$$v_a = v_A \pm \frac{1}{2} (J_{AX} + J_{AX'})$$

a a' bb'-Teilspektrum (A1 und A2-Symmetrietyp)

X.
$$v_a = v_A + \frac{1}{2} (J_{AX} - J_{AX'});$$
 $l = J_{AA'} - J_{AA'''} - J_{XX'}$
 $v_b = v_A - \frac{1}{2} (J_{AX} - J_{AX'});$ $m = 0$
 $k = 2 J_{AA''} - 2 J_{XX'};$ $n = J_{AA'} + J_{AA'''} + J_{XX'}$

k, l, m, n sind die Teilspektren-Parameter, welche den Grössen K, L, M, N in gewöhnlichen AA'BB'-Spektren entsprechen.

			·	Tabelle 7. <i>Die Invarianten der 1</i> A. <i>Die Systeme a</i>	Ceilspektrentransforma b _n und a b c	tionen	
System	Teil d	ler Hay	autron-Matrix	Invariante	Invariantenantci		
					Chemische Verschiebung	Spin-Spin- Kopplung	Gemischte Terme
$a b_n$	a ₁₁			$2 a_{11} - (b_{11} + b_{22})$	$v_a + v_b$	$J_{a \ b}(I_b + {}^1/_2)$	0
	b_{11} b_{21}	$b_{12} \\ b_{22}$		$ a_{11}^2 - 2 a_{11} (b_{11} + b_{22}) + b_{11} b_{22} - b_{12} b_{21} $	$v_a \cdot v_b$	0	$J_{ab} \ ^{(1/_2} v_a + I_b \ v_b)$
a b c	a_{11}			$3a_{11} - (b_{11} + b_{22} + b_{33})$	$v_a + v_b + v_c$	$J_{ab} + J_{ac} + J_{bc}$	0
	b_{11} b_{21} b_{31}	$b_{12} \\ b_{22} \\ b_{32} \\ b_{32}$	b_{13} b_{23} b_{33}	$\begin{array}{l}3a_{11}^2-2a_{11}(b_{11}+b_{22}+b_{33})\\+(b_{11}b_{22}+b_{11}b_{33}+\\b_{22}b_{33}-b_{12}^2-b_{13}^2-b_{23}^2)\end{array}$	$ \begin{array}{c} v_a \ v_b + v_a \ v_c \\ + v_b \ v_c \end{array} $	$\frac{\frac{3}{4}}{\int_{ab}^{ab}\int_{bc}^{ac}+}$	$ \begin{array}{c} 1_{l_2}\left\{\left(\nu_a+\nu_b+\nu_c\right)\left(J_{ab}+J_{ab}+\nu_c\right)\right.\\ J_{ac}+J_{bc}\right\}+J_{ac}\left(\nu_b\right)\\ J_{bc}\left(\nu_a+J_{ac}\left(\nu_b\right)\right\} \end{array} $
				B. Das Systen	1 a a' b b'		
System	Teil c	ler Haw	ALTON-Matrix	Invariante	Invariantenantei		
					Chemische Verschiebung	Spin-Spin- Kopplung	Gemischte Tcrme
a a' b b'	u ⁿ			$2a_{11} - (b_{11} + b_{22})$	0	n/2	0
	$\begin{bmatrix} b_{11} \\ b_{21} \end{bmatrix}$	b_{12} b_{22}		$a_{11}^2 - 2 a_{11} (b_{11} + b_{22}) + b_{11}b_{22} - b_{12}b_{21}$	$v_a \cdot v_b$	0	$n_{l_2}(v_a+v_b)$
	b11 b21	$b_{12} \\ b_{22} \\ b_{22}$		$\frac{4(b_{11}+b_{22})}{-2(c_{11}+c_{22}+c_{33})}$	$4 \ (\nu_a + \nu_b)$	2 (n + h)	0
	^c 11 ^c 21 ³¹	⁽ 12 ⁽²² (32	⁶ 13 ⁶ 23 ⁶ 33				
	d_{11} d_{21} d_{21} e_{11}	$d_{12}^{d_{12}}$ $d_{22}^{d_{22}}$ $e_{12}^{e_{12}}$		$ \begin{array}{l} -\left(d_{11}+d_{22}\right)\left(e_{11}+e_{22}\right)\\ +2\left\{\left(d_{11}d_{22}-d_{12}d_{21}\right)\\ +\left(e_{11}e_{22}-e_{12}e_{21}\right)\right\} \end{array} $	<i>ba</i> . <i>v</i> _b	$-1/_2 (t^2 + m^2)$	$(v_a - v_b) \cdot m/2$

Volumen 48, Fasciculus 3 (1965) - No. 62

575

aa'bb'-Teilspektrum (B_1 - und B_2 -Symmetrietyp)

XI.

$$\begin{aligned}
\nu_{a} &= \nu_{A} + \frac{1}{2} \left(J_{AX} - J_{AX'} \right); & l = J_{AA'} - J_{AA'''} + J_{XX'} \\
\nu_{b} &= \nu_{A} - \frac{1}{2} \left(J_{AX} - J_{AX'} \right); & m = 0 \\
k &= 2 J_{AA''} + 2 J_{XX'}; & n = J_{AA'} + J_{AA'''} - J_{XX'}
\end{aligned}$$

Die nach den Transformationen IX, X und XI berechneten Teilspektren werden in Fig. 2 zusammen mit dem Ausgangsspektrum dargestellt.

Fig. 2. AA'A''A'''-Teil des AA'A''A'''XX'-Spektrums und seine Teilspektren 1. Vollständiger AA'A''A'''-Teil; Parameter in Hz:

$$\begin{array}{ll} J_{AX} &= 8.0 & J_{AA'''} = 3.0 \\ J_{AX'} &= 2.0 & J_{XX'} = 1.0 \\ J_{AA''} &= 4.0 & J_{AA'} = 7.0 \end{array}$$

Die mit einem Pfeil versehenen Linien sind mit $1/_4$ der wahren Intensität gezeichnet.

- 2. a_4 -Teilspektren (Transformation IX)
- 3. aa'bb'-Teilspektren (Transformation X), A_1 und A_2 -Symmetrietyp

4. aa'bb'-Teilspektren (Transformation XI), B1- und B2-Symmetrietyp

Der XX'-Teil des Spektrums kann aus Tabelle 6 abgelesen werden. Innerhalb eines bestimmten Symmetrietyps sind die erlaubten Übergänge durch die Bedingungen $\Delta F_z(XX') = \pm 1$ und $\Delta F_z(AA'A''A'''XX') = \pm 1$ festgelegt. Wir erhalten 2 x_2 und 10 xy-Teilspektren. Dazu kommen zwei Energieniveaugruppierungen der Art (3:4:3) und (1:4:1), die keinem bekannten Teilspektrentyp zugeordnet werden können. Der XX'-Teil ist jedoch nicht von Interesse, da, wie aus den Teilspektrentransformationen hervorgeht, sämtliche Parameter des Problems aus der Analyse des AA'A''A'''-Teils erhalten werden können.

3.4. Das System A A' A" XX' X"

Da der Teilspektrenzerfall des Systems an anderer Stelle [6] beschrieben wurde, sollen direkt die dazugehörenden Transformationen angegeben werden. Der AA'A''-Teil des Spektrums zerfällt in $2 a_3$, $2 a b_2$ sowie 2 a b b'-Spektren. a_3 -Teilspektren:

XII.
$$v_a = v_A \pm \frac{1}{2} (2 J_{AX} + J_{AX'})$$

 ab_2 -Teilspektren: (A_1 - und A_2 -Symmetrietyp)

XIII.
$$v_a = v_A \pm \frac{1}{2} (2 J_{AX} - J_{AX'}); \qquad J_{ab} = J_{AA'} + J_{XX'}$$

$$v_b = v_A \pm \frac{1}{2} J_{AX'}$$

Fig. 3. Das AA'A''XX'X''-Spektrum und seine Teilspektren

1. Vollständiger XX'X"-Teil; Parameter in Hz:

$$J_{AX} = 10,0 J_{AX'} = 2,0 J_{XX'} = 8,0$$

Die mit einem Pfeil versehenen Linien sind mit halber Intensität gezeichnet. 2. x_3 -Teilspektren (Transformation XII, A und X vertauscht)

- 3,4. xy2-Teilspektren (Transformation XIII, A und X vertauscht)
- 5,6. xyy'-Teilspektren (Transformation XIV, A und X vertauscht)
- 7,8. *abb'*-Teilspektren (Transformation XIV)
- 9. Vollständiger AA'A"-Teil

abb'-Teilspektren: (E-Symmetrietyp)

$$\begin{aligned} \text{XIV.} \quad & \boldsymbol{\nu}_{a} = \boldsymbol{\nu}_{A} \pm \frac{1}{2} \left(2 \ J_{AX} - J_{AX'} \right) ; \qquad & J_{ab} = J_{AA'} + \frac{1}{2} \left(\sqrt{3} - 1 \right) J_{XX'} \\ & \boldsymbol{\nu}_{b} = \boldsymbol{\nu}_{A} \pm \frac{1}{2} \ J_{AX'} ; \qquad & J_{ac} = J_{AA'} - \frac{1}{2} \left(\sqrt{3} + 1 \right) J_{XX'} \\ & \boldsymbol{\nu}_{c} = \boldsymbol{\nu}_{A} \pm \frac{1}{2} \ J_{AX'} ; \qquad & J_{bc} = J_{AA'} - \frac{1}{2} \ J_{XX'} . \end{aligned}$$

Eine Vertauschung von A mit X zeigt, dass die a_3 und ab_2 resp. x_3 und xy_2 -Teilspektren in den AA'A'' und XX'X''-Teilen des Gesamtspektrums identisch sind. Der abb'- resp. xyy'-Teil hingegen erhält durch diese Vertauschung neue Kopplungskonstanten. Im Gegensatz zum AA'XX'- ist somit das AA'A''XX'X''-System für $J_{AA'} \neq J_{XX'}$ nicht symmetrisch bezüglich einer Vertauschung von A mit X. In Fig. 3 werden gerechnete Spektren und Teilspektren des Systems dargestellt.

3.5. Das System ABB'XX'

Fig. 4. ABB'-Teil des ABB'XX'-Spektrums und seine Teilspektren 1. Vollständiger ABB'-Teil; Parameter in Hz

$$\begin{aligned} \mathbf{v}_{a} &= 0 & J_{AB} = 7,0 & J_{AX} = 8,0 & J_{BX'} = 2,0 \\ \mathbf{v}_{b} &= 10,0 & J_{BB'} = 5,0 & J_{BX} = 3,0 & J_{XX'} = 3,0 \end{aligned}$$

2.3. ab_2 -Teilspektren (Transformation XV)

4. *abc*-Teilspektrum (Transformation XVI), A_1 -Symmetrietyp

5. abc-Teilspektrum (Transformation XVII), B_2 -Symmetrietyp

578

Der Teilspektrenzerfall des Systems wurde von DIEHL *et al.* [3] untersucht. Der ABB'-Teil des Spektrums ist eine Überlagerung von $2ab_2$ - und 2abc-Teilspektren. Die Transformationen lauten:

XV.

$$u_a = v_A \pm \frac{1}{2} J_{AX}; \qquad J_{ab} = J_{AB}$$
 $u_b = v_B \pm \frac{1}{2} (J_{BX} + J_{BX'})$

abc-Teilspektrum (A_1 -Symmetrie)

XVI.
$$v_a = v_A$$
; $J_{ab} = J_{AB}$
 $v_b = v_B + \frac{1}{2} (J_{BX} - J_{BX'})$; $J_{ac} = J_{AB}$
 $v_c = v_B - \frac{1}{2} (J_{BX} - J_{BX'})$; $J_{bc} = J_{BB'} + J_{XX'}$

abc-Teilspektrum (B₂-Symmetrie)

$$\begin{split} \nu_{a} &= \nu_{A} ; & J_{ab} = J_{AB} \\ \nu_{b} &= \nu_{B} + \frac{1}{2} (J_{BX} - J_{BX'}) ; & J_{ac} = J_{AB} \\ \nu_{c} &= \nu_{B} - \frac{1}{2} (J_{BX} - J_{BX'}) ; & J_{bc} = J_{BB'} - J_{XX} \end{split}$$

An einem gerechneten Beispiel wird in Fig. 4 der Teilspektrenzerfall des Systems gezeigt.

Auf den XX'-Teil des Spektrums soll nicht weiter eingegangen werden, da durch die Analyse des ABB'-Teils sämtliche Parameter des Problems bestimmbar sind.

4. Schlussfolgerungen. – Enthält ein Spinsystem mindestens ein Paar schwach gekoppelte Kerne, so gibt es, wie oben gezeigt, einfache Teilspektren. Die einfachsten Teilspektren sind von der Kompliziertheit der stark gekoppelten Gruppen und treten für die Extremwerte der Spinkomponente F_z auf. So z. B. sind die ab_{2^-} und die x_{2^-} Teilspektren die einfachsten des Systems A BB' XX'. Sie entsprechen den Werten $F_z(XX') = \pm 1$ und $F_z(A BB') = \pm 3/2$.

Gelingt es, diese Teilspektren zu identifizieren und zu analysieren, so ist eine direkte Bestimmung der chemischen Verschiebung innerhalb der stark gekoppelten Gruppe sowie der Summe der schwachen Kopplungskonstanten möglich. Die Methode der Teilspektrenanalyse wird deshalb von besonderem Interesse, z. B. bei Untersuchungen von Lösungsmitteleinflüssen, sein, bei welchen nur die chemische Verschiebung als Funktion der Verdünnung untersucht wird. Es ist in diesem Fall nicht nötig, für jede Verdünnung eine vollständige Analyse des Spektrums durchzuführen.

Das Identifizieren von Teilspektren kann in einfachen Fällen durch graphische Methoden [3], allgemein durch Anwendung der Doppelresonanz mit schwachem Hochfrequenzfeld [7] durchgeführt werden. Während die Teilspektren mit extremen F_z -Werten immer eine einfache Bedeutung haben, ist es möglich, dass die restlichen Gruppierungen von Zuständen im Energieniveauschema sich keinem bekannten Teilspektrentyp zuordnen lassen. In Problemen der Form AA'..., BB'..., XX'... sind derartige Gruppierungen im XX'...-Spektrum zu erwarten. Sie sind jedoch nicht von Interesse, da sämtliche Parameter des Problems durch Analyse des AA'..., BB'..., ...-Teils erhalten werden können. Enthält ein Spektrum jedoch zwei stark gekoppelte Gruppen chemisch nicht äquivalenter Kerne, im einfachsten Fall ABXY, so kann mit Hilfe der Teilspektrenanalyse nur eine teilweise Lösung des Problems erreicht werden. Auf die Diskussion von Spektren dieser Art soll an anderer Stelle eingegangen werden.

Die vorliegende Arbeit wurde durch Beiträge des Schweizerischen Nationalfonds unterstützt. Dr. R. G. Jones (Ministry of Aviation, E.R.D.E., Waltham Abbey, England) bin ich für wertvolle Diskussionen zu Dank verpflichtet.

SUMMARY

After a short description of the principles of subspectral analysis, the method of subspectral transformations is introduced. Subspectral transformations transform parts of the Hamiltonian of complex nmr-problems into the Hamiltonian of simpler subproblems. The method is applied to spectra of the type AA'XX', AA'A''A'''XX', AA'A'''A'''XX', AA'A'''A'''XX', which are shown to be superpositions of simple and well known subspectra.

Physikalisches Institut der Universität Basel

LITERATURVERZEICHNIS

- [1] D. R. WHITMAN, L. ONSAGER, M. SAUNDERS & H. T. DUBBS, J. chem. Physics 32, 67 (1960).
- [2] J. A. POPLE & T. SCHAEFER, Mol. Physics 3, 547 (1961); P. DIEHL & J. A. POPLE, *ibid. 3*, 557 (1961).
- [3] P. DIEHL, R. G. JONES & H. J. BERNSTEIN, Canad. J. Chemistry 43, 81 (1965).
- [4] J. A. POPLE, W. G. SCHNEIDER & H. J. BERNSTEIN, Canad. J. Chemistry 35, 1060 (1957).
- [5] W. G. PATERSON & E. J. WELLS, Mol. Spectroscopy 14, 101 (1964).
- [6] R. G. JONES, R. C. HIRST & H. J. BERNSTEIN, soll in Canad. J. Chemistry veröffentlicht werden.
- [7] W. A. ANDERSON & R. FREEMAN, J. chem. Physics 37, 85 (1962).